Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell Metab ; 36(3): 575-597.e7, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237602

RESUMEN

The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.


Asunto(s)
Receptores de Glucagón , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Receptores de Glucagón/metabolismo , Regulación hacia Abajo , Ratones Noqueados , Riñón/metabolismo , Homeostasis/fisiología , Lípidos
2.
Nat Commun ; 14(1): 6531, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848446

RESUMEN

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Asunto(s)
Adiponectina , Gluconeogénesis , Riñón , Animales , Masculino , Ratones , Adiponectina/genética , Adiponectina/metabolismo , Gluconeogénesis/genética , Gluconeogénesis/fisiología , Glucosa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones Noqueados , Ácido Pirúvico/metabolismo
3.
Mol Metab ; 78: 101821, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806486

RESUMEN

The disease progression of the metabolic syndrome is associated with prolonged hyperlipidemia and insulin resistance, eventually giving rise to impaired insulin secretion, often concomitant with hypoadiponectinemia. As an adipose tissue derived hormone, adiponectin is beneficial for insulin secretion and ß cell health and differentiation. However, the down-stream pathway of adiponectin in the pancreatic islets has not been studied extensively. Here, along with the overall reduction of endocrine pancreatic function in islets from adiponectin KO mice, we examine PPARα and HNF4α as additional down-regulated transcription factors during a prolonged metabolic challenge. To elucidate the function of ß cell-specific PPARα and HNF4α expression, we developed doxycycline inducible pancreatic ß cell-specific PPARα (ß-PPARα) and HNF4α (ß-HNF4α) overexpression mice. ß-PPARα mice exhibited improved protection from lipotoxicity, but elevated ß-oxidative damage in the islets, and also displayed lowered phospholipid levels and impaired glucose-stimulated insulin secretion. ß-HNF4α mice showed a more severe phenotype when compared to ß-PPARα mice, characterized by lower body weight, small islet mass and impaired insulin secretion. RNA-sequencing of the islets of these models highlights overlapping yet unique roles of ß-PPARα and ß-HNF4α. Given that ß-HNF4α potently induces PPARα expression, we define a novel adiponectin-HNF4α-PPARα cascade. We further analyzed downstream genes consistently regulated by this axis. Among them, the islet amyloid polypeptide (IAPP) gene is an important target and accumulates in adiponectin KO mice. We propose a new mechanism of IAPP aggregation in type 2 diabetes through reduced adiponectin action.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Ratones , Adiponectina/genética , Adiponectina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
4.
Dis Model Mech ; 16(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589563

RESUMEN

Intestinal immunity is dependent on barrier function to maintain quiescence. The mechanisms for the maintenance of this barrier are not fully understood. Delta 4-desaturase, sphingolipid 2 (DEGS2) is a lipid desaturase and hydroxylase that catalyzes the synthesis of ceramide and phytoceramide from dihydroceramide. Using a forward genetic approach, we found and validated a mutation in Degs2 as causative of increasing susceptibility to colitis and altering the phytoceramide balance in the colon. DEGS2 is expressed in the intestinal epithelium, and the colitis phenotype is dependent on the non-hematopoietic compartment of the mouse. In the absence of DEGS2, the colon lacks phytoceramides and accumulates large amounts of the precursor lipid dihydroceramide. In response to dextran sodium sulfate (DSS)-induced colitis, colonic epithelial cells in DEGS2-deficient mice had increased cell death and decreased proliferation compared to those in wild-type mice. These findings demonstrate that DEGS2 is needed to maintain epithelial integrity, protect against DSS-induced colitis and maintain lipid balance in vivo.


Asunto(s)
Colitis , Animales , Ratones , Ceramidas , Oxigenasas de Función Mixta , Inflamación , Ácido Graso Desaturasas
5.
Cell ; 186(9): 1968-1984.e20, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37040760

RESUMEN

Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , N-Metiltransferasa de Histona-Lisina/genética , Hígado/metabolismo , Mosaicismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo
6.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993727

RESUMEN

Somatic mutations in non-malignant tissues accumulate with age and insult, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate mutations found in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to non-alcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7 , a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side-by-side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Bcl6, Tbx3, or Smyd2 resulted in protection against NASH. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease. Highlights: Mosaic Mboat7 mutations that increase lipotoxicity lead to clonal disappearance in NASH. In vivo screening can identify genes that alter hepatocyte fitness in NASH. Mosaic Gpam mutations are positively selected due to reduced lipogenesis. In vivo screening of transcription factors and epifactors identified new therapeutic targets in NASH.

7.
Nat Metab ; 4(11): 1474-1494, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36329217

RESUMEN

Iron is essential to many fundamental biological processes, but its cellular compartmentalization and concentration must be tightly controlled. Although iron overload can contribute to obesity-associated metabolic deterioration, the subcellular localization and accumulation of iron in adipose tissue macrophages is largely unknown. Here, we show that macrophage mitochondrial iron levels control systemic metabolism in male mice by altering adipocyte iron concentrations. Using various transgenic mouse models to manipulate the macrophage mitochondrial matrix iron content in an inducible fashion, we demonstrate that lowering macrophage mitochondrial matrix iron increases numbers of M2-like macrophages in adipose tissue, lowers iron levels in adipocytes, attenuates inflammation and protects from high-fat-diet-induced metabolic deterioration. Conversely, elevating macrophage mitochondrial matrix iron increases M1-like macrophages and iron levels in adipocytes, exacerbates inflammation and worsens high-fat-diet-induced metabolic dysfunction. These phenotypes are robustly reproduced by transplantation of a small amount of fat from transgenic to wild-type mice. Taken together, we identify macrophage mitochondrial iron levels as a crucial determinant of systemic metabolic homeostasis in mice.


Asunto(s)
Tejido Adiposo , Hierro , Masculino , Ratones , Animales , Hierro/metabolismo , Tejido Adiposo/metabolismo , Macrófagos/metabolismo , Adipocitos/metabolismo , Inflamación/metabolismo
8.
Cell Rep ; 40(11): 111362, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103820

RESUMEN

Obesity is associated with increased cancer incidence and progression. However, the relationship between adiposity and cancer remains poorly understood at the mechanistic level. Here, we report that adipocytes from tumor-invasive mammary fat undergo de-differentiation to fibroblast-like precursor cells during tumor progression and integrate into the tumor microenvironment. Single-cell sequencing reveals that these de-differentiated adipocytes lose their original identities and transform into multiple cell types, including myofibroblast- and macrophage-like cells, with their characteristic features involved in immune response, inflammation, and extracellular matrix remodeling. The de-differentiated cells are metabolically distinct from tumor-associated fibroblasts but exhibit comparable effects on tumor cell proliferation. Inducing de-differentiation by Xbp1s overexpression promotes tumor progression despite lower adiposity. In contrast, promoting lipid-storage capacity in adipocytes through MitoNEET overexpression curbs tumor growth despite greater adiposity. Collectively, the metabolic interplay between tumor cells and adipocytes induces adipocyte mesenchymal transition and contributes to reconfigure the stroma into a more tumor-friendly microenvironment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Adipocitos/metabolismo , Animales , Neoplasias de la Mama/patología , Matriz Extracelular/metabolismo , Femenino , Humanos , Neoplasias Mamarias Animales/patología , Microambiente Tumoral
9.
Diabetes ; 71(12): 2496-2512, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35880782

RESUMEN

Caveolin-1 (cav1) is an important structural and signaling component of plasma membrane invaginations called caveolae and is abundant in adipocytes. As previously reported, adipocyte-specific ablation of the cav1 gene (ad-cav1 knockout [KO] mouse) does not result in elimination of the protein, as cav1 protein traffics to adipocytes from neighboring endothelial cells. However, this mouse is a functional KO because adipocyte caveolar structures are depleted. Compared with controls, ad-cav1KO mice on a high-fat diet (HFD) display improved whole-body glucose clearance despite complete loss of glucose-stimulated insulin secretion, blunted insulin-stimulated AKT activation in metabolic tissues, and partial lipodystrophy. The cause is increased insulin-independent glucose uptake by white adipose tissue (AT) and reduced hepatic gluconeogenesis. Furthermore, HFD-fed ad-cav1KO mice display significant AT inflammation, fibrosis, mitochondrial dysfunction, and dysregulated lipid metabolism. The glucose clearance phenotype of the ad-cav1KO mice is at least partially mediated by AT small extracellular vesicles (AT-sEVs). Injection of control mice with AT-sEVs from ad-cav1KO mice phenocopies ad-cav1KO characteristics. Interestingly, AT-sEVs from ad-cav1KO mice propagate the phenotype of the AT to the liver. These data indicate that ad-cav1 is essential for healthy adaptation of the AT to overnutrition and prevents aberrant propagation of negative phenotypes to other organs by EVs.


Asunto(s)
Caveolina 1 , Vesículas Extracelulares , Insulina , Animales , Ratones , Adipocitos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Dieta Alta en Grasa , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Ratones Noqueados
10.
Sci Rep ; 12(1): 9960, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705631

RESUMEN

Metabolic syndrome increases risk of complicating co-morbidities. Current clinical indicators reflect established metabolic impairment, preventing earlier intervention strategies. Here we show that circulating sphingolipids are altered in the very early stages of insulin resistance development. The study involved 16 paired overweight but healthy monkeys, one-half of which spontaneously developed metabolic syndrome over the course of 2 years. Importantly, animals did not differ in adiposity and were euglycemic throughout the study period. Using mass spectrometry, circulating sphingolipids, including ceramides and sphingomyelins, were detected and quantified for healthy and impaired animals at both time points. At time of diagnosis, several ceramides were significantly different between healthy and impaired animals. Correlation analysis revealed differences in the interactions among ceramides in impaired animals at diagnosis and pre-diagnosis when animals were clinically indistinguishable from controls. Furthermore, correlations between ceramides and early-stage markers of insulin resistance, diacylglycerols and non-esterified fatty acids, were distinct for healthy and impaired states. Regression analysis identifies coordinated changes in lipid handling across lipid classes as animals progress from healthy to insulin resistant. Correlations between ceramides and the adipose-derived adipokine adiponectin were apparent in healthy animals but not in the metabolically impaired animals, even in advance of loss in insulin sensitivity. These data suggest that circulating ceramides are clinically relevant in identifying disease risk independent of differences in adiposity, and may be important in devising preventative strategies.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Animales , Ceramidas , Macaca mulatta , Síndrome Metabólico/etiología , Obesidad/metabolismo , Esfingolípidos
11.
Nat Commun ; 12(1): 4829, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376643

RESUMEN

Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Dioxoles/farmacología , Glucosa/metabolismo , Ácido Hialurónico/metabolismo , Lipólisis/efectos de los fármacos , Adipocitos/citología , Tejido Adiposo/citología , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Intolerancia a la Glucosa/metabolismo , Homeostasis , Humanos , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo
12.
Cell Metab ; 33(9): 1853-1868.e11, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34418352

RESUMEN

Adipocytes undergo intense energetic stress in obesity resulting in loss of mitochondrial mass and function. We have found that adipocytes respond to mitochondrial stress by rapidly and robustly releasing small extracellular vesicles (sEVs). These sEVs contain respiration-competent, but oxidatively damaged mitochondrial particles, which enter circulation and are taken up by cardiomyocytes, where they trigger a burst of ROS. The result is compensatory antioxidant signaling in the heart that protects cardiomyocytes from acute oxidative stress, consistent with a preconditioning paradigm. As such, a single injection of sEVs from energetically stressed adipocytes limits cardiac ischemia/reperfusion injury in mice. This study provides the first description of functional mitochondrial transfer between tissues and the first vertebrate example of "inter-organ mitohormesis." Thus, these seemingly toxic adipocyte sEVs may provide a physiological avenue of potent cardio-protection against the inevitable lipotoxic or ischemic stresses elicited by obesity.


Asunto(s)
Adipocitos , Vesículas Extracelulares , Adipocitos/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias Cardíacas , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
13.
J Lipid Res ; 62: 100095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34214600

RESUMEN

The pleiotropic actions of adiponectin in improving cell survival and metabolism have motivated the development of small-molecule therapeutic agents for treating diabetes and lipotoxicity. AdipoRon is a synthetic agonist of the adiponectin receptors, yet is limited by its poor solubility and bioavailability. In this work, we expand on the protective effects of AdipoRon in pancreatic ß-cells and examine how structural modifications could affect the activity, pharmacokinetics, and bioavailability of this small molecule. We describe a series of AdipoRon analogs containing amphiphilic ethylene glycol (PEG) chains. Among these, AdipoRonPEG5 induced pleiotropic effects in mice under insulinopenic and high-fat diet (HFD) conditions. While both AdipoRon and AdipoRonPEG5 substantially attenuate palmitate-induced lipotoxicity in INS-1 cells, only AdipoRonPEG5 treatment is accompanied by a significant reduction in cytotoxic ceramides. In vivo, AdipoRonPEG5 can substantially reduce pancreatic, hepatic, and serum ceramide species, with a concomitant increase in the corresponding sphingoid bases and improves insulin sensitivity of mice under HFD feeding conditions. Furthermore, hyperglycemia in streptozotocin (STZ)-induced insulinopenic adiponectin-null mice is also attenuated upon AdipoRonPEG5 treatment. Our results suggest that AdipoRonPEG5 is more effective in reducing ceramides and dihydroceramides in the liver of HFD-fed mice than AdipoRon, consistent with its potent activity in activating ceramidase in vitro in INS-1 cells. Additionally, these results indicate that the beneficial effects of AdipoRonPEG5 can be partially attributed to improved pharmacokinetics as compared with AdipoRon, thus suggesting that further derivatization may improve affinity and tissue-specific targeting.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Piperidinas/farmacología , Animales , Resistencia a la Insulina , Hígado/química , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas/administración & dosificación , Piperidinas/química , Polietilenglicoles/química
14.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34292885

RESUMEN

The metabolic environment is important for neuronal cells, such as photoreceptors. When photoreceptors undergo degeneration, as occurs during retinitis pigmentosa (RP), patients have progressive loss of vision that proceeds to full blindness. Currently, there are no available treatments for the majority of RP diseases. We performed metabolic profiling of the neural retina in a preclinical model of RP and found that TCA cycle intermediates were reduced during disease. We then determined that (a) promoting citrate production within the TCA cycle in retinal neurons during disease progression protected the photoreceptors from cell death and prolonged visual function, (b) supplementation with single metabolites within the TCA cycle provided this therapeutic effect in vivo over time, and (c) this therapeutic effect was not specific to a particular genetic mutation but had broad applicability for patients with RP and other retinal degenerative diseases. Overall, targeting TCA cycle activity in the neural retina promoted photoreceptor survival and visual function during neurodegenerative disease.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , ADN/genética , Proteínas del Ojo/genética , Mutación , Enfermedades Neurodegenerativas/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Animales , Muerte Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Electrorretinografía , Proteínas del Ojo/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
15.
Cell Metab ; 33(8): 1624-1639.e9, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34174197

RESUMEN

Iron overload is positively associated with diabetes risk. However, the role of iron in adipose tissue remains incompletely understood. Here, we report that transferrin-receptor-1-mediated iron uptake is differentially required for distinct subtypes of adipocytes. Notably, adipocyte-specific transferrin receptor 1 deficiency substantially protects mice from high-fat-diet-induced metabolic disorders. Mechanistically, low cellular iron levels have a positive impact on the health of the white adipose tissue and can restrict lipid absorption from the intestine through modulation of vesicular transport in enterocytes following high-fat diet feeding. Specific reduction of adipocyte iron by AAV-mediated overexpression of the iron exporter Ferroportin1 in adult mice effectively mimics these protective effects. In summary, our studies highlight an important role of adipocyte iron in the maintenance of systemic metabolism through an adipocyte-enterocyte axis, offering an additional level of control over caloric influx into the system after feeding by regulating intestinal lipid absorption.


Asunto(s)
Adipocitos , Tejido Adiposo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Hierro/metabolismo , Lípidos , Ratones , Obesidad/metabolismo
16.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904399

RESUMEN

Adiponectin is essential for the regulation of tissue substrate utilization and systemic insulin sensitivity. Clinical studies have suggested a positive association of circulating adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin null mouse and a transgenic adiponectin overexpression model. We directly assessed the effects of circulating adiponectin on the aging process and found that adiponectin null mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover, adiponectin null mice have a significantly shortened lifespan on both chow and high-fat diet. In contrast, a transgenic mouse model with elevated circulating adiponectin levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue inflammation and fibrosis, and a prolonged healthspan and median lifespan. These results support a role of adiponectin as an essential regulator for healthspan and lifespan.


Asunto(s)
Adiponectina/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Femenino , Glucosa/metabolismo , Homeostasis , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos , Longevidad/fisiología , Masculino , Ratones , Ratones Transgénicos
17.
J Hepatol ; 75(2): 387-399, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33746082

RESUMEN

BACKGROUND & AIMS: We have previously reported that the mitochondrial dicarboxylate carrier (mDIC [SLC25A10]) is predominantly expressed in the white adipose tissue (WAT) and subject to regulation by metabolic cues. However, the specific physiological functions of mDIC and the reasons for its abundant presence in adipocytes are poorly understood. METHODS: To systemically investigate the impact of mDIC function in adipocytes in vivo, we generated loss- and gain-of-function mouse models, selectively eliminating or overexpressing mDIC in mature adipocytes, respectively. RESULTS: In in vitro differentiated white adipocytes, mDIC is responsible for succinate transport from the mitochondrial matrix to the cytosol, from where succinate can act on the succinate receptor SUCNR1 and inhibit lipolysis by dampening the cAMP- phosphorylated hormone-sensitive lipase (pHSL) pathway. We eliminated mDIC expression in adipocytes in a doxycycline (dox)-inducible manner (mDICiKO) and demonstrated that such a deletion results in enhanced adipocyte lipolysis and promotes high-fat diet (HFD)-induced adipocyte dysfunction, liver lipotoxicity, and systemic insulin resistance. Conversely, in a mouse model with dox-inducible, adipocyte-specific overexpression of mDIC (mDICiOE), we observed suppression of adipocyte lipolysis both in vivo and ex vivo. mDICiOE mice are potently protected from liver lipotoxicity upon HFD feeding. Furthermore, they show resistance to HFD-induced weight gain and adipose tissue expansion with concomitant improvements in glucose tolerance and insulin sensitivity. Beyond our data in rodents, we found that human WAT SLC25A10 mRNA levels are positively correlated with insulin sensitivity and negatively correlated with intrahepatic triglyceride levels, suggesting a critical role of mDIC in regulating overall metabolic homeostasis in humans as well. CONCLUSIONS: In summary, we highlight that mDIC plays an essential role in governing adipocyte lipolysis and preventing liver lipotoxicity in response to a HFD. LAY SUMMARY: Dysfunctional fat tissue plays an important role in the development of fatty liver disease and liver injury. Our present study identifies a mitochondrial transporter, mDIC, which tightly controls the release of free fatty acids from adipocytes to the liver through the export of succinate from mitochondria. We believe this mDIC-succinate axis could be targeted for the treatment of fatty liver disease.


Asunto(s)
Adipocitos/metabolismo , Mitocondrias Hepáticas/patología , Animales , Modelos Animales de Enfermedad , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo
18.
Cell Stem Cell ; 28(4): 702-717.e8, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539722

RESUMEN

The adipose tissue stroma is a rich source of molecularly distinct stem and progenitor cell populations with diverse functions in metabolic regulation, adipogenesis, and inflammation. The ontology of these populations and the mechanisms that govern their behaviors in response to stimuli, such as overfeeding, however, are unclear. Here, we show that the developmental fates and functional properties of adipose platelet-derived growth factor receptor beta (PDGFRß)+ progenitor subpopulations are tightly regulated by mitochondrial metabolism. Reducing the mitochondrial ß-oxidative capacity of PDGFRß+ cells via inducible expression of MitoNEET drives a pro-inflammatory phenotype in adipose progenitors and alters lineage commitment. Furthermore, disrupting mitochondrial function in PDGFRß+ cells rapidly induces alterations in immune cell composition in lean mice and impacts expansion of adipose tissue in diet-induced obesity. The adverse effects on adipose tissue remodeling can be reversed by restoring mitochondrial activity in progenitors, suggesting therapeutic potential for targeting energy metabolism in these cells.


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas de Unión a Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Mitocondrias , Células Madre/metabolismo
19.
J Sep Sci ; 44(1): 448-463, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33085158

RESUMEN

While supercritical fluid chromatography was developed over 50 years ago, it is only over the past 15 to 20 years that it has become routinely utilized. Along with the commercialization of a new generation of instruments, during the last 20 years supercritical fluid chromatography has improved performance, reliability, and robustness. Supercritical fluid chromatography is fully compatible with mass spectrometric techniques. This review compiles the application of supercritical fluid chromatography separations coupled to mass spectrometry instrumentation for the exploration, profiling, and quantitation of metabolites during the last two decades. The selection of metabolites chosen for this article have direct applications in preclinical models of disease and clinical applications as potential biomarkers of disease including lipids, steroid hormones, bile acids, polar metabolites, peptides, and proteins.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Metabolómica , Péptidos/metabolismo , Proteínas/metabolismo , Ácidos y Sales Biliares/análisis , Cromatografía con Fluido Supercrítico , Hormonas Esteroides Gonadales/análisis , Humanos , Lípidos/análisis , Espectrometría de Masas , Péptidos/análisis , Proteínas/análisis
20.
Artículo en Inglés | MEDLINE | ID: mdl-33219119

RESUMEN

INTRODUCTION: Sphingolipid accumulation has been linked to obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). A recent study showed that depletion of dihydroceramide desaturase-1 (DES-1) in adipose and/or liver tissue decreases ceramide-to-dihydroceramide ratios (ceramide/dihydroceramide) in several tissues and improves the metabolic profile in mice. We tested the hypothesis that ceramide/dihydroceramide would also be elevated and relate positively to liver fat content and insulin resistance in humans. RESEARCH DESIGN AND METHODS: Thus, we assessed total and specific ceramide/dihydroceramide in various biosamples of 7 lean and 21 obese volunteers without or with different NAFLD stages, who were eligible for abdominal or bariatric surgery, respectively. Biosamples were obtained from serum, liver, rectus abdominis muscle as well as subcutaneous abdominal and visceral adipose tissue during surgery. RESULTS: Surprisingly, certain serum and liver ceramide/dihydroceramide ratios were reduced in both obesity and non-alcoholic steatohepatitis (NASH) and related inversely to liver fat content. Specifically, hepatic ceramide/dihydroceramide (species 16:0) related negatively to hepatic mitochondrial capacity and lipid peroxidation. In visceral adipose tissue, ceramide/dihydroceramide (species 16:0) associated positively with markers of inflammation. CONCLUSION: These results failed to confirm the relationships of ceramide/dihydroceramide in humans with different degree of insulin resistance. However, the low hepatic ceramide/dihydroceramide favor a role for dihydroceramide accumulation in NASH, while a specific ceramide/dihydroceramide ratio in visceral adipose tissue suggests a role of ceramides in obesity-associated low-grade inflammation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ceramidas , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...